lunes, 9 de noviembre de 2015

Álgebra Simbólica


ÁLGEBRA SIMBÓLICA 

Durante el siglo XVIII se continuó trabajando en la teoría de ecuaciones y en 1799 el matemático alemán Carl Friedrich Gauss publicó la demostración de que toda ecuación polinómica tiene al menos una raíz en el plano de los números complejos.
En los tiempos de Gauss, el álgebra había entrado en su etapa moderna. El foco de atención se trasladó de las ecuaciones polinómicas al estudio de la estructura de sistemas matemáticos abstractos, cuyos axiomas estaban basados en el comportamiento de objetos matemáticos, como los números complejos, que los matemáticos habían encontrado al estudiar las ecuaciones polinómicas.
Dos ejemplos de dichos sistemas son los grupos y las cuaternas, que comparten algunas de las propiedades de los sistemas numéricos, aunque también difieren de ellos de manera sustancial.
 Los grupos comenzaron como sistemas de permutaciones y combinaciones de las raíces de polinomios, pero evolucionaron para llegar a ser uno de los más importantes conceptos unificadores de las matemáticas en el siglo XIX.
 Los matemáticos franceses Galois y Augustin Cauchy, el británico Arthur Cayley y los noruegos Niels Abel y Sophus Lie hicieron importantes contribuciones a su estudio.
Las cuaternas fueron descubiertas por el matemático y astrónomo irlandés William Rowan Hamilton, quien desarrolló la aritmética de los números complejos para las cuatreñas.
Después del descubrimiento de Hamilton el matemático alemán Hermann Grassmann empezó a investigar los vectores. A pesar de su carácter abstracto, el físico estadounidense J. W. Gibbs encontró en el álgebra vectorial un sistema de gran utilidad para los físicos, del mismo modo que Hamilton había hecho con las cuaternas.
La amplia influencia de este enfoque abstracto llevó a George Boole a escribir Investigación sobre las leyes del pensamiento (1854), un tratamiento algebraico de la lógica básica. Desde entonces, el álgebra moderna —también llamada álgebra abstracta— ha seguido evolucionando; se han obtenido resultados importantes y se le han encontrado aplicaciones en todas las ramas de las matemáticas y en muchas otras ciencias.
Recuperado de: 
http://www.profesorenlinea.cl/matematica/AlgebraHistoria.htm

No hay comentarios.:

Publicar un comentario