ÁLGEBRA MODERNA O ÁLGEBRA ABSTRACTA
álgebra abstracta se desarrolló en el siglo XIX, inicialmente centrada en lo que hoy se conoce como teoría de Galois y en temas de la constructibilidad.12 Los trabajos de Gauss generalizaron numerosas estructuras algebraicas. La búsqueda de una fundamentación matemática rigurosa y una clasificación de los diferentes tipos de construcciones matemáticas llevó a crear áreas del álgebra abstracta durante el siglo XIX absolutamente independientes de nociones aritméticas o geométricas (algo que no había sucedido con el álgebra de los siglos anteriores).
Consiste en que los números se emplean para representar cantidades conocidas y determinadas. Las letras se emplean para representar toda clase de cantidades, ya sean conocidas o desconocidas. Las cantidades conocidas se expresan por las primeras letras del alfabeto: a, b, c, d, … Las cantidades desconocidas se representan por las últimas letras del alfabeto: u, v, w, x, y, z.
Los signos empleados en álgebra son tres clases: Signos de operación, signos de relación y signos de agrupación.
Signos de operación
En álgebra se verifican con las cantidades las mismas operaciones que en aritmética: suma, resta, multiplicación, elevación a potencias y extracción de raíces, que se indican con los principales signos de aritmética excepto el signo de multiplicación. En lugar del signo × suele emplearse un punto entre los factores y también se indica a la multiplicación colocando los factores entre paréntesis. Así a⋅b y (a)(b) equivale a a × b.
Signos de relación
Se emplean estos signos para indicar la relación que existe entre dos cantidades. Los principales son: =, que se lee igual a. Así, a=b se lee “a igual a b”. >, que se lee mayor que. Así, x + y > m se lee “x + y mayor que m”. <, que se lee menor que. Así, a < b + c se lee “a menor que b + c”.
Signos de agrupación
Los signos de agrupación son: el paréntesis ordinario ( ), el paréntesis angular o corchete [ ], las llaves { } y la barra o vínculo ||. Estos signos indican que la operación colocada entre ellos debe efectuarse primero. Así, (a + b)c índica que el resultado de la suma a y b debe multiplicarse por c; [a – b]m indica que la diferencia entre a y b debe multiplicarse por m, {a + b} ÷ {c – d} índica que la suma de a y b debe dividirse entre la diferencia de c y d. El orden de estos signos son de la siguiente forma { [ ( ) ] }, por ejemplo: { [ (a + b) - c] ⋅ d} indica que al resultado de la suma de a + b debe restarse c y el resultado de esto multiplicarse por d.
No hay comentarios.:
Publicar un comentario